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ABSTRACT

Bifurcation of equilibrium and periodic solutions of nonlinear evolu-

tion equations is considered in the neighbourhood of an equilibrium solu-

tion for which the corresponding linear problem admits both non-zero

equilibrium and non-constant periodic solutions. These solutions of the

linear problem are related to those of the nonlinear equation by deriving

bifurcation equations possessing a simple symmetry property. This results

in a simplification of the bifurcation analysis, illustrated by a discus-

sion of two important special cases exhibiting secondary bifurcation of

periodic solutions.
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~SIGNIFICANCE AND EXPLANATION

Suppose there is a known equilibirum solution u = u0 of the equation

du + F(,u) = 0, u = u(t) e X, C e p (1)
- dt

for some value E = E0 of a control parameter E, where F is a differ-

entiable nonlinear mapping into a finite or infinite dimensional Banach

space X. The problem discussed in this paper is that of characterizing

equilibrium and t-periodic solutions of (1) near u0 , when & is allowed

to vary near 0" This is a bifurcation problem when the corresponding

linear equation

dv + Lv = 0 v = v(t) e X, v # 0 (2)
dt

possesses equilibrium or periodic solutions. Here, Lv = D uF(& ,u0)v is

the linear part of an expansion of F(Eou 0 + v) around v = 0.

This problem is of importance in chemical reactions, for which (1)

will represent the reaction and diffusion dynamics of the variable concen-

tration and temperature u, and E may for example measure a controlled

concentration of reactant, or a diffusion constant, etc.

Assuming that L satisfies assumptions guaranteeing in particular

that (2) admits both equilibrium and periodic solutions, the bifurcation

problem is reduced to that of solving a pair of real equations

f0(,M,8) = 0, f1(EM,8) - 0 (3)

known as the bifurcation equations. The functions f0 ,fl, and the real

variables c,8 are so chosen that the first equation is even in 8, while

the second is odd in B. This sinple symmetry property is shown to greatly

simplify the study of the bifurcation problem.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

'It

K ~ ~. -- -



COINCIDENT BIFURCATION OF EQU1ILIBRI'_". A!IJ,
PERIODIC SOLUTIONS OF EVOLUTION EQUATIONS

Michael Shearer'

1. INTRODUCTION.

let (2 be a neighbourhood of zero in e' 30, with m >0, n 3, an.~

F C Cr(, ) with p > 3, satisfy

k(Hi) F(0,0) = 0

For C e ePl near zero, we consider equilibrium and periodic solutions u near

of the equation

dt

under the following assumption concerning the spectrum a(L) C a: of the linear

*operator L -F u(0,0).

(a i is an algebraically simple eigenvalue of L

(H2) (b) 0 is an algebraically simple eigenvalue of L ER ,

(,ce) ii j( c(L) for n -2,3,...

in particular, (H2) implies that the linear equation

at- + Lu = 0 (1.2)

pomsesses non-zero equilibrium solutions, and periodic solutions with least period 2-.

To show how these solutions of (1.2) generate solutions of the nonlinear equation (1.1),

we derive a pair of bifurcation equations in section two. The bifurcation equations

possess a simple symmetry, corresponding to the invariance of (1.1) under the trans-

lation of t by nr.

In section three, we replace le' in (1.1) by a real Banach space X, and let

1 lrl x X -' X satisfy* (HI), together with appropriate regularity conditions, and

a spectral assumption corresponding to (H2) (see (Al), (A2)). VX adopt the quite fo 4

tDapatment of Mathmtics, Duke University, Durham, North Carolina, 27706

Sposord b th UntedStaes rm under w* Cotrc No DA2-75C-



general setting of Crandall and Rabinowitz [2], which involves the study of an inte-

grated form of equation (1.1). The derivation of the bifurcation equations is slightly

complicated by this device, the comparison with the straightforward analysis of section

two being of some interest. In this context, the Hilbert space approach of Joseph and

Sattinger [81, and Kielhofer [10, 111 should be mentioned, in which Hopf bifurcation

for equation (1.1) (with ]Rn  replaced by a Hilbert space) is studied by working

directly with (1.1).

In section four, we briefly discuss the bifurcation equations, appealing to the

bifurcation theory of Golubitsky and Schaeffer [5], together with the results in [13].

In particular, the secondary bifurcation of periodic solutions observed by Keener [91

and Langford [12], is explained in terms of the symmetry in the bifurcation equations.

Other approaches to the bifurcation problem for (1.1) under (HI), (H2), include those

of Cronin [3], using degree theory, and of Hoyle [7], involving the center manifold

theory.

Throughout, we refer to the papers of Crandall and Rabinowitz Ell, [21, for pre-

liminary results, generalizing these to the present context without proof, where

appropriate. The fundamental difference between the situation considered here and

that of Hopf bifurcation, in the sense of [], [2), is that equation (1.2) is here

assumed to possess non-zero equilibrium solutions, whereas for Hopf bifurcation, such

solutions of (1.2) are excluded. A consequence of this is that it is worthwhile con-

sidering perturbed bifurcation problems, for which purpose we allow m > 1, and write

C (A, ) e E X l , where A is the real bifurcation parameter, and u E im para-

metrizes possible perturbations. This is not the case for Hopf bifurcation however,

which would be qualitatively the same for j = 0 and small u # 0, thus rendering

the generality of m > I superfluous.

Notation. Subscripts are used to denote partial (Frechet) derivatives. The null space

and range of a linear operator A are denoted by N(A), R(A) respectively. If f is

p times continuously Fr~chet differentiable on a set U, with values in a set V, we

write f e Cp (U,V), or say f U -V is of class CP .

-2-r
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2. THE FINITE DIMENSIONAL CASE

In this section, we derive bifurcation equations for the finite dimensional problem

defined in the introduction. Specifically, for integers m > 0, n > 3, p > 3, we

consider the equation

du+
a- F(&,u) - 0 (E,u) f 0 (2.1)

where F e CP( ]Rn) for some neighbourhood Q C]Rm+ l  R of zero, and F is assumed

to satisfy (HI), (W2).
-l

Let T = P t. Then 2wp-periodic solutions of (2.1) correspond to 2w-periodic

solutions of the equation

u, + pF(&,u) = 0 (2.2)

dwhere a prime denotes . Note that the parmter p has to be determined as part

of the solution of (2.2). Let C (],]R), C1 (E,]Rn) denote respectively the Banach
C2we 2W

spaces of continuous, and continuously differentiable, 2w-periodic functions from

E to in , with norms

Itul12,- MaX{Iu(T)I : T e 10,2w]

hu112,,wl IlUI12,+ Iu' 112,

Set

F(p,.,u) = u' + pF( ,u)

Then there is a neighbourhood U of zero in IP+ l , and a neighbourhood w of zero
in C1 (Itn) such that 3R x u x w - C2w(]R,mn) is p times continuously

21r

differentiable.

For u,v in L2 (10,25 ,,), define

2w
(uv) - I (u(T),v(T)) dT

where (",-) n denotes the usual scaler product in f. Letting L* denote the

adjoint of L, condition (1H2) implies that there exist vectors 0,810 in e\{0}

*and a,b in In\{0o such that

i
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L 0 0 0, L*) = 0, La = ia, L*b = -ib

(S0 0 )1 '0 n = (2w) (a,b) = T

Now set

Oi = Re(eiTa), = i = Im (e ia)

Then (i, = 6 i,j - 0,1,2 and the following lemma characterizes N T ar

R.Q + L) (for details of the proof, see [l]).

Lema 2.1. Suppose L : Rn -.R satisfies (H2), and let Pk, k' k = 0,1,2 be defined

as above. Then {o0#kiv2} is a basis for N(-L + L) in C {O, n), and0 2 N(d+L in 2 RR)

R( -+ L) - {f e C2  , ) fk) 0 o, k=0,1,21

For 0 e R, define a bounded linear operator S : C2 rOR,PRn) _ C (,m n ) b,.'

(S6w)(T) - w(T + e), T e R, and note that S also maps C 1(O n ) into itself.e0 ap C2 ( m Trnoitef
The invariance of equation (2-2) under translations of T may be expressed by the

property.

F(P,&,Su) = seF(PCu) (p, ,u) e R x U X W (2.3)

for each 0 e R. The operator S S is of particular importance here, as S o S = I,

the identity operator, and

SOO 0 0' So 0 0; SOj = -, sV= -j (j = 1,2) (2.4)

Moreover, S is self adjoint:

(Si,*) - (0,S*) for p,* in C2 , OR, R) (2.5)

The following subspaces are invariant under S:

c- (I + S)C n (R, ), C+.+ (I + S)C2 (R, e)

and
1 (]~n) = C 1 2(~ n) = -

C2W (3R, NO 0 C, - C C-

-4-
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By (2.3), F maps RxW (U C ) into C+, and (..I, = . -

into C+, respectively. Let V = f' E + (v,-) . Th 1

linear subspace of C complementary to span -7" . Similarl t

V= { (v, i ) = 0, i = 1,2-. Then V is comrle-ntar: t3 c, -,C
1

'

C and V = V % V is complementary to N'- + Li in C_(l, .
+ -

tion P C2 (,Rn) - R d + L) by

2
PU = U - '(U_ k) k

k=O
Clearly,

PSO = S;P

for all 6 e [0,27).

By the implicit function theorem, the equation

PF 0, ,w¢0 + B,1 + v) = u (2.

has a unique solution v = v(pc,,8) in an open ball B C V around 0, for

(P,&,a,8) in a neighbourhood D CIR x l  IR x F of (1,0,0,0). The function

: D -* B is of class C
p
, and (Hl) implies v(c,0,0,0) = 0 identically. Operatinc

on (2.7) with S, and using (2.3), (2.6),

PF(p,Ei 0 + N + v(p,&,ct,8)) = 0 (o,&,c,3) C

which implies that D may be taken to be symmetric about = , and

S (, ,,8)= v(0, ,a,-6)(-

It follows that v(p,&,a,O) C V+, but we require the following stronger result.

Le ia 2.2. v(p,&,ct,0) is a constant function of T, for each (r,(,z), and is

independent of p @ 0.

Proof. Set 8 = 0 in (2.7) and consider only constant v (i.e. v e , '7). Then

the left hand side of (2.7) lies in iRn , and P projects onto R(L). This leaves

the equation

pPoF(&,m 0 + v) = 0 v n V (2. '0 0

where PO :m :3 R(L) :w " w - (W,Jo)0 O . Dividing (2.9) by c 0 0, and applying thc

implicit function theorem in a neighbourhood of (&,a) = (0,0), v = 0, yields a uni>uz

-5-



solution v = v(,a) of (2.9). But v = v(&,a) is a solution of (2.8) when = 0.

Therefore, v( ,.) v(L,,,,O) is independent of - and P # 0.

Since V is invariant under S@ (0 E JR), if (0,E,u) E IR x U x W is a solution

of (2.2) near (1,0,0), then u = $9(n€ 0 + B; I + v), for (o,8,v) f I
2 

x V and

9 f [0,27T). But then v = ( and (0,EO,8) c D must satisfy

(F(P'0+ " 41 + 3.k = 0 k = 0,1,2 (2.10)

Conversely, each solution (p,f,) e D of (2.10) generates a family

ue = S ( P0 + &i + v(,6,,)) 8 1 0,2)} of solutions of (2.2), the elements

u of which, differ only in phase 9.

Let gk(p,Ea,6) denote the left hand side of (2.10), k = 0,1,2. Then (2.3)-

(2.5), (2.8) imply

90(P,&,e, - B) = g 0 (oEs,8) (2.11)

gk(PCe,-6)= -gk(p,Eas) k = 1,2 (2.12)

The next step in deriving the bifurcation equations is to eliminate r from (2.10),

by solving the equation

g2(PEO,8) = 0 (2.13)

for p near 1 in terms of (E,a,8) near (0,0,0). First differentiate the identity

PF(P, 0 + + v(p'&,8)) = 0 (2.14)

with respect to 8 at (&,a,8) = (0,0,0), r# 0

PFu (p,°O)( + (p,0,0,0)) 0

But PFu (0,O,O)P 1  NO (I + oPW) = (O - l)Pj 1 = (1 - p) 2 = 0, and the restriction

of Fu (o,0,0) to V is one-to-one for all p near 1. Therefore

(p,0,0,0) = 0 for all p near I

so that

-(1,0,0,0) = 0 = __ (,o,0,0) (2.15)

Now differentiate the identity

-6-
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I
2 F (c-, + v) *"'* (2.16)i u 0 1 :i 2: '"

with respect to o at 1, ( = (0,0,0), using (2.15):

S 0,0,0) = {' ) = -i (2.17)

A similar argument gives

90- (1,0,0,0) - (0,
0  = 0

2g I  (2.18)

91 (1,0,0,0) - (L. ) = 0

which will be used in section fo'ur. Define a function h D - R of class Cp , by

h~ , , S, - 92 - (0, , ) ( CL 0)

g2h(P,Ct,O) = -- ((,,a,0)

Then h(l,0,0,0) = 0 (by (2.15), (2.16)), and - (,0,0,0) = -1, by (2.17). The

implicit function theorem therefore implies that there exist positive numbers n,C,

and a function : BT *]R (B denoting the ball in ]Wm+l x R x R with center zero

and radius n) of class c-i, such that D(0,0,0) = 1 and P = (( ,c,6) is the

unique solution of

h(, = 0 Po - 11 E, ( 6) e a

By lemma 2.2, i(p,E,a,O) is independent of p and T. Therefore g (p,czO) is

linear in p, and g1 (P,&,,O) = 0 identically. Consequently, setting 6 = 0 in

(2.10) is equivalent to seeking equilibrium solutions of equation (2.2), for which 0

is undetermined. In this sense, p = 6((,a,8) describes all the solutions of (2.13)

of interest. Since h(p,E,a,a) is even in 8 (by (2.12)), we have

(2.19)

Substituting p into gk 0 0, k - 0,1, we obtain the bifurcation equations:

0 k = 0,1 (2.20)

where fk(EtB = gk((3,c,8), ,uB) satisfy

-7-



Tk

k( , = (-1) k(l, ,) k= ,l

In particular, if (Ea,B) is a solution of (2.20), then so is (C, ,- ),

solutions of (2.20) correspond to solutions of (2.2) differing onl' by a rhasE

2he mapping (f0 ,fI B -* 2 is of class C
p- I

, and of class C* away

6 = 0. From (Hi),

f k(0,0,0) = 0 k = 0,1

and (H2) implies

-- (0,0,0) = -f- (0,0,0) = 0 k = 0,1 2.1

To sunarize, (2.21)-(2.23) represent the basic properties of the bifurcation ecuation

(2.20) for equation (2.1), assuming (Hi) and (H2).

-8-
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3. THE INFINITE DIMENSIONAL CASE.

In this section, we show how the Launov-Scr.-idt t----

finite dimensional problems may be carried over tc infinite !inenio.....

result of this section, proposition 3.2, states that the hifurcat n.........

written in the form (2.20), and satisfy properties (2.21)-(Z.22).

of these properties differs significantly from that in section two, awev r, .r "

vides an interesting generalization of the usual Lyapunov-Schmidt rocdrc. -I

the finite dimensional case, the setting and preliminary. theor.' ierive larce- fin

papers of Crandall and Rabinowitz [1,21.

Let X be a real Banach space with norm V , and let X = X i: -. .c

plexification of X. We use the same symbol A to denote the extension to K if

linear operator A in X; a(A) denotes the (complex) spectrum of A.

Let L be a densely defined linear operator on A, satisfyning

Al): (i) -L is the infinitesimal generator of a strongly continuous semigrouF

T(t) on X.

(ii) T(t) is a holomorphic semigroup on xc.c

(iii) (XI - L)-1 is compact for all X in the resolvent set of L.

(iv) i is an algebraically simple eigenvalue of L.

(v) 0 is an algebraically simple eigenvalue of L : X - X

(vi) ni % a(L), n = 2,3,...

If n > -ReX for all X e o(L), then the fractional powers (L + -I)' are

defined for a > 0, and have domains D((L + ni)a) dense in X. Let X denote t'o

Banach space D((L + qI)a), with norm defined by

I1II OL =1L + nI)5 x1j for xE X.

We consider an equation of the form

du + Lu + f(&,u) = 0 (r,u) 4 R " X (3.2'
dt

where m > 0, and f satisfies

-9-
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(A2): For some c i [0,1), p > 3, there is a neighbourhood 9 of (CD) in

R"' - X such that f e CP(.,X). In addition, f(0,0) = 0 and f U,0)X= :0 .

HYpotheses (Al), (A2) correspond respectively to (HL), (Hf) in [2]. The values

of -, and p will henceforth be considered fixed by condition (A2).

-i
Setting 7 = t, we see that 2'r-periodic solutions of (3.1) correspond to

2--periodic solutions of the equation

u' + -(Lu + f(E,u)) = 0 (3.2)

d
where a prime denotes d

The following lemma, relating solutions of (3.2) to those of an integrated form of

the equation, is proved in [4, 6].

Lemma 3.1. Suppose (Al), (A2) hold, let r > 0, and let u e C([O,r],X ). The follow-

ing statements are then equivalent.

(i) u' f C((0,r],X), u((O,r]) C D(L), and (3.2) is satisfied on (O,r).

(ii) U(T) - T(cT)u(0) + o f T(0(T - s))f(E,u(s))ds = 0, for 0 . r.
0

We say u is a solution of (3.2) if u f C([O,r],X ) and (ii) of lemma 3.1 is
I

satisfied. Let C2 (]R,X) be the Banach space of 2,T-periodic functions from F to

X , and let C 0([O,2T],X ) be the Banach space of continuous functions h : [0,2,1-] X

such that h(O) = 0. If w is a function from 3R to X, and 9 > 0, define

(S'w) (T) = w(T + e).

Proposition 3.2. Let (Al), (A2) hold. Then there exist neighbourhoods U of 0

in C 2,(PR,X ) and W of (0,0) in ]R
m +l x 2, together with functions

(f 0,f W -P
2  

6 : W -3R, u : W - U, each of class C
p -  

and satisfying

(i) If ( ,n) 6 W and fk(&,q) = 0, k = 0,1, then u = u(&,n) is a solution

of (3.2) for this value of E • e + , with P =

(ii) G(0) 0, = (0) = 0, k = 0,1 and the 2 x2 matrix

D (f 0 ,f 1 ) (0,n)l =(0,0) has all entries zero.

(iii) ui( ,ca,- ) = Su(,,£) , 0(ta,-B) f 6(E,a,B), fk (R,a,-) = (-l) kfk E, P),

k = 0,1, for all (E,a,8) e W.

-10-
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I

(iv) There exists > 0 such that if (c, ,u) E I X m+ 1 , -

~2
, and (:,,u) is a solution of (3.2), then for some ( ) 2 such that

( W, ,f W (,,:) 0, k = 0,1, u = S~u( ,.-,-) for some ( [0,2-), and

either s = 0 (if u(-) is independent of T C R), or S =

(v) u(E,-,,0) is a constant function for all (T,a,0) W.

The proof of proposition 3.2 occupies the rest of this section. Define

T

F(., ,u) () = U(T) - T(cT)u(O) + f f T(:(T - s))f( ,u(s))ds (3.3)

0

F is to be regarded as a mapping of that subset of R x C 2 (IR,X) for which

(3.3) makes sense into C0 (0,2,rj,X ).

Leimma 3.3. Suppose (Al), (A2) are satisfied. Then F is p times continuously

differentiable from its domain into C0 (0,2-],X ) and F( ,O,O) = 0 for e (0,-).

Moreover, for v E C (P,X ) and > 0,

(F ( ,0,O)V)(T) = V(T) - T(OT)V(0) T > 0 (3.4)
u

Lemma 3.3 is proved in [2].

Let A : C2 (E,X ) - C 0([,2n],X ) denote the linear operator Fu(1,0,0). By

(3.4), (Au)(T) - U(T) - T(T)U(O). The following characterization of N(A), R(A) is

a straightforward generalization of lenma 1.13 of [2], to the present situation.

Lemma 3.4. Let (Al) hold. Then

(i) N(I + L 
2

) 0 N(L) =N(I - T(27T)) and N(I + L*
2 ) 

0 N(L*) = N(I - T(2r)*).

(ii) There exists x1 e N(I - T(2T)) such that xl,X 2 = Lx1  span N(I + L 
2 ) 

and

T(C)x k - (cosT)xk + (sinr)Lxk, k = 1,2, T > 0 (3.5)

If x0  spans N(L), then T(T)X0 - x0 , T > 0.

(iii) There exists x* C N(I - T(2r)*) such that x*,x* = Lx* span N( + L* 2).
1 12 1

If x0  spans N(L*), then h e R(A) if and only if (h(2s),x ) = 0, k 0,1,2.
0

That is, h e R(A) if and only if h(27r) f RI - T(21t)).

iv) x',x* may be chosen in (iii) so that
01

(xi'x) = j i,j = 0,1,2
Sij

-ll-
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(v) For T > 0, set 4k(T) = T()Xk,(k = 1,2

Then (o 0, %P 
} 

is a basis for N(A).
012

In lemma 3.4, (-,,) denotes the pairing between X and its dual .:-

of an operator M : X - X is denoted by M*, and I is the identit.' operator

X and X*.

We define a family (P : P E (0,2)1 of projections on C0 (0,2-,X.) as f5!::..

For p E (0,2) and T > 0, let E {() be the linear mapping in N(I - T(2-)) dclf:-.;

by

E 0(T)X 0  (T/2i)x 0 , E (T)x k - IT(T) - T(CT)1Jx, k = 1,2

and let M (T) be the linear mapping in N(I - T(2r)) defined by0

M (T) = [E 0(2)]- E p(T), if g g 1 and Ml(T)Xk -(7/
2
-)T(r)xk, k = 0,1,2

Then, for w E C0 ([0,2w],X), p e (0,2), set

2
(p W) (T) = W(T) - [ (w(2),X;)M (T)x k
p k0

LAma 3.5. Let (Al) hold. Then

(a) For each p e (0,2), P is a projection of Co (EO,2],X ) onto R(A).

(b) The mapping (p,w) - P0 w from (0,2) x Co((0,2r],X ) to R(A) is analytic.

Proof. Part (a) follows immediately from lemm 3.4 (iii). To prove (b), note that

(3.5) implies that P w is analytic in (p,w), except possibly at C - 1. It isP

easily shown that E 0(2ir)]- E0(T)x k (k = 1,2) involves singular terms only of the

form (sin(p - l)T/sin(p - l)i)xj (J e {l,2}), each of which has a removable singu-

larity at p = 1. Hence result.

In the standard Lyapunov-Schmidt procedure, it would be natural to use the single

projection P1 of C0 ((O,2w],X ) onto R(A). However, the family JP c (0,2)

of such projections is inportant here, and lerma 3.5 shows that the equation F * 0

may be replaced by the system

P F(p,&,u) - 0 (3.6)

(I - P )Fo,&,u) - 0 (3.1)

[p

-12-
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The reason for doing this is that we wish to preserve ;.n this '- . ,

symmetry induced by the invariance of equation (3.2) under translatio- -

invariance is expressed in terms of F by the identity

F(c0, ,Seu)(T) = (S-F(r, ,u) ](T) - T( F(: , ,u)(-2

which holds for all e > 0, T > 0, and (c,,u) in the domain of F.

Lemma 3.6. Let (Al), A2) hold, and suppose P F(,:,u) = 0. Then

2
(i) F(, ,u) (-)= (F (P, ,u) (27),x*)M (r)x k  for all '

k=O

(ii) F(PP,S u) = T(M)F(o,.,u), for a!" e > 0

(iii) PPF(0,,Su) = 0, for all e > 0

Proof. Suppose P F(o,E,u) = 0. Then0

2
F(p,E,u) (T) = I akMoT)Xk (

k=O

for T e [0,2rT], where ak = (F(p,E,u)(21T), X), k = 0,1,2. We require the identit.,

M (r + 0) = T(e)M (T) + T(r))M (9) (3.1-)
0 0 0

which holds for all p e (0,2), T > 0, 6 > 0.

Suppose (3.9) holds for all T e 10,2mn], for some integer n > 1. Let

T C [0,2in], and set a = 27 in (3.8).

F(P, ,u) (T + 27) = F(o,&,S 2 u) (T) + T(PT)F(P,E,u) (2w)

2
= FRp, ,u)(T) + T(T) I a kA

k=O

2
= I a k[M (T) + T(pT)M (2w)]x k

kmo

2

= akMo(T + 2 w)xk, by (3.10)
kO

Thus, (3.9) holds for all T e (0,2w(n + 1)], and i) is proved by induction.

-13-
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F'rom (3.8) and part (i), we have

2
F(c, C.%u) Cr) i ak FMCr + e~) -T(OT)M

k=0 k ()lxk

2
= a kT(ON (T)X k T(@)F(o,&,u) Cr), by (3.10)
k=0

which proves (ii). Moreover

2
P _T (a) F U, ,u) (r) = P I kc(,Tex

k= 0

2 2 2
= () a T(O)xk - j: : a (T(e)x.k~x!)x. = 0

0 UO k k 0 k k=0j

This proves (iii).

Let V be the closed linear subspace of C 2 O, X OL) defined by

V = v fC2T("'o(): U T(- -s)v(s)ds,x ) = 0, k =0,2

Then V * N(A) = C 2 T OZX ). writing u = + v, (,;,v) E N(A) x V, in (3.6), we solve

(3.6) for v as a function of by the implicit function theorem. Set

G(o,E,ct,6,v) = P PF(P,E&,ct~ + &c+ v). Then G is of class Cpfrom a neighbourhood

of~~~~ ~ 1,,,,)i (02 3Plx1R x R V, into R(A). Moreover, G(1,0,0,0,0) =0

and G (1,0,0,0,0) = A :V -~ RCA) is a linear homeomorphism. By the implicit function

theorem, there exists a neighbourhood D of (1,0,0,0) in e+4 , and a neighbourhood

B of zero in V, together with a function D 0- B of class (?, such that

C'(1,0,0,0) = 0, and

P F(,,p + S8P + v(P,&,x, 8)) =0 for (p,ac,8) c D 3.1

Moreover, for each (p~c,)e D, v - (p,E,ci,B) is the unique solution in B of

G = 0. This together with lemua 3.6 (ii), and (3.11), implies

P PF(P,&,a 0~ + Bs 6 01 + S6 ~p~c,) = 0 (3.12)

identically, so that

SA(,,i0 (,,i0 for all 6 > 0 (3.13)

-14-
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and

S v(:,-l,. ,3 ) v(;',5 , ,-3) (3.14)

In particular, (3.13) means that v(.L,-,,0)(r) is a constant (i.e. independent of T).

Now substitute u = + ECl + v(U,&,,S) into (3.7), which becomes, by

lemma 3.4 (iii).

(F(o,&¢,0 + 641 + v(,,,a, S))(27),x*) = 0, k = 0,1,2 (3.15)

0 1 k

Let gk, denote the left hand side of (3.15), k = 0,1,2. As in section

two, we wish to show that g0 ,g1 ,g2  satisfy the relations (2.11), (2.12). Noting that

T = x, T(cT)*x* =-5 k= 1,2,

(2.11), (2.12) follow from the identity

gk= (F(0,, - 8 1 +

= (T(ir)F(PEa'; + &i + ,(p,, a,())(27T),x*)
0 1 k

= (F(p,a, 0 + $';+ v(oE,+ ,)(2 ),T(r)*x*)

In order that p be undetermined for equilibrium solutions of (3.2), it is enough

to show that v(p,&,a,0) is independent of p whenever F(p,&,w 0 + .(p, ,c,0)) = 0.

We remark that in the finite dimensional case, it was possible to show that the

corresponding v(p, ,c,0) is independent of 0, without qualification.

Lemma 3.7. Let (Al), (A2) hold. If (P,&,a,0) e D satisfies

F (P, ,, 0 + O(p,E,a,0)) = 0, then (p, ,e,0) (r) is independent of T C R, and 0.

proof. Suppose u e X is a constant satisfying FRo,&,u) - 0 for some (p,&), r 0.

Then

T
u = T(pr)u - 0 f T(p(T - s))f(&,u)ds = g(p)(r)

0

say,and g(P) (T) is consequently independent of T > 0. But

g(P + P)(T) = g(P)((P + p)T/P) for all P > -p

which implies that g(p) is independent of p > 0. Therefore

F(,,u) (T) U g(P)(r) u - g(P)(r) 0 o

for all P > 0, T > 0.

-15-



I

As remarked earlier, (3.13) implies that v( -, ,,')W is -.-. >--.

for each (p,&,a). Suppose f,,c,0) D 0 satisfies F(: , ., 

Then, since s () is also independent of T e I, the above discuisscon :7.-
0

F(,, + v(,,,0)) = 0 for all 2
0

In particular,

P F( , , + v(c,E,o,0)) = 0 for all 0

which inplies that v(P,&,0) - r(,E,a,0) whenever o,., are near 1. Hence resIt.

Lemma 3.8. Let (Al), (A2) hold. Then there exists c > 0 such that for - 1

- (o,0,0,0) = 0

Proof. Differentiating (3.11) with respect to B at = 0, t = 0 = , and settinz

B 
(
1
) 

-B (p,0,0,0I(T) , 4P(T) = 01(T) - T(pT)-I(0), we have

0 - p F (p,0,0)(%p + '&) = p , + p F u(,O,O)v = P F (,o,0)v (3.1.'-
Pu1 8 0 u u

Now the restriction of A = P F u(1,0,0) to V is one-to-one. Therefore, since

p - P F (o,,O) is continuous, the restriction of P F (,O,O) to V is one-to-one0 u 0 u

for all p near 1, say 0o - 11 < c. Since v8 B V, (3.16) proves the result.

In particular, it follows from lemma 3.8 that

-g (0,0,0,0) = (0i(27) - T(2,roIpI (O),x2) = -sin2r (3.17)

so that

92 a 292
(1,0,0,0) - 01, (1,0,0,0) = -21T (3.18)

As in section two, define a function h : D - M of class Cp -1 by

h(p,&,a,S) - B-1 2 (p, , ,) if 6 Y 0

3g
h(p,E,c&,0) - - ( ' ,0,0)

From (3.18) and the imlicit function theorem, it follows that there exist positive

nuomler co and a function : B It of class Cp -I  (and of class Cp  in the

region 0 10 0) such that, writing x - (BuB) n '

-16-
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I

P(0) 1, h( x),x) 0 for all x B_, and if - !

x f B satisfy h(,,x) = 0, then = (x).

Since h(p,&,a,- ) = h(o,at,8), p satisfies

( ,-)= (, , ) for all Q1, ,i) E "

Setting fk( ,,aa) g k k = r,l, we have the bifurcation cc-a-: -

f , 0. f( = 0, ( 4,E,)E B.

where (f0,f Br " 
2  

is of class C
p -
l, and of class C away/ from

Moreover, (3.19) and the symmetry properties (2.11), (2.12) imply that

fk( ,o,-S) = (-l)k f k( ,,), k = 0,1 (.21

identically in B n

Since V is invariant under T(G), 0 f [0,21], and S, = T( ) on .Z(A), the

argument of section two may be repeated here, to show that solutions (7,A,:) ( B of

(3.20) correspond to small norm equilibrium and 2'r-periodic solutions of equation (3.2),

with P = ( ,cS) (see proposition 3.2 (iv)). Setting

,m + Ui + , and choosing U and W appropriately, we

have proved proposition 3.2.

-17-



4. BIFURCATION.

To discuss bifurcation of equilibrium and periodic solutions of (2.1) or (3.1), we

set = (,) -0 , where ' is to be considered a real bifurcation parameter,

and - 4E Rm  parameterizes possible perturbations. The bifurcation problem is to des-

cribe the local structure of equilibrium and periodic solutions of (2.1) or (3.1) in

(-,u) - space (i.e. near (P,u) = (0,0)) for each fixed ; near zero. For periodic

solutions with period near 2r, we have shown that under the conditions (HI), (H2) or

(Al), (A2), this is equivalent (in the sense specified by proposition 3.2) to the

bifurcation problem for the bifurcation equations

f0 = 0, f1(X,\,,,6) = 0, (6,o) C B (4.1)

where f0 f are real valued functions of class Cp -  satisfying (2.2l)-(2.23).

The natural setting for a discussion of bifurcation for equations (4.1), is the

singularity theory developed by Golubitsky and Schaeffer [5], at least when p = -. It

is not our purpose here to attempt a general analysis of (4.1), however, but simply to

emphasize two important cases (for which the possible bifurcation structure is well

documented in [5)), and to remark on how these relate to the work of Keener 191 and

Langford 1121, on secondary bifurcation of periodic solutions.

We shall need to specify conditions on derivatives of F :J x Rn _ 3,n  (when

considering (2.1)), and corresponding conditions on f . Rm+l x X O- X (when consider-

ing (3.1)). To save duplication, we state these only for F; the corresponding condi-

tions on f are readily obtained.

We consider the following two situations

2
I: - ,) e R , and F(X,6,0;0) - 0 for all (X,5) near (0,0).

II: u e JR, and F(X,i;-u) - -F(X,l;u) identically.

Case I. We observe that v(pX,6,0,0.O) - 0 identically, so that f kVX,O,0,0) = 0,

k - 0,1, identically. Together with (2.21)-(2.23), this implies that (f 0,f1

(),6,v,i,2) has a Taylor expansion about zero in JR5, of the form

-18-



2 .2
f, (a. + bo)c +qt + r c 

(4.2)
fl (a + bl I + S),,- + SR ( 

5,v, ,$)

where (R, R ) is of class Cp -I, and contains terms of higher order than those

written explicitly in (4.2). Set

0 0 1 0 0
L, = F1, L =F u S =-TFu F VF1 u 

' 
2 25Q uu' v'

a superscript 0 indicating that each of these derivatives is evaluated at (0,0,0;0).

The coefficients in (4.2) are given by

a0 = 27(L 0 ) an ;  
a, = I l(L a,b)Cn

b =2 2 (L20,0 ; b I = lTRe(L 2a,b) e

q = 2 7(Q( ,0 ),1P0) s = 2(Q(€0,€I)

r = (Q(1 ,4 1),ip) c = 2n(w, 0

Note that we have here used (2.18), (2.19) to ensure that 6(X,pva,8) does not con-

tribute to these coefficients.

If we assume the non-degeneracy condition
a0b I f albo, a0q # a1p, qrs y 0, c 10 0 (4.3)

then bifurcation for equations (4.1) is qualitatively described by the following

truncated form of those equations.

(a0X + bo0)O + q 2 + r82 + cv = 0 (4.4)

(aIX + b16) + s8 = 0

This result is given precise meaning for p = = in (5]. For any p > 4, and v = 0,

the correspondence between solutions of (4.4) and those of (4.1) is established in (13],

and may easily be generalized to v # 0.

In particular, when v = 0, (4.4), and consequently (4.1), admits exactly one

secondary bifurcation for all 6 # 0 near 0 [13). Secondary branches for (4.1) have

8 1 0 away from the bifurcation point, which lies on a primary branch with 8 - 0.

-19-
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This corresponds to secondary bifurcation of periodi sol.ticns _-

branch of equilibrium solutions, which agrees with the observationz of

Langford [121. For v 1 0 however, the (primary) bifurcation of ecu.li z-i

is destroyed, while bifurcations of periodic solutions from curves of ec'ii:i -

tions are preserved (see [51 for a complete set of bifurcation diagrams).

Case II. We here consider one parameter perturbations, I, when .

with respect to u. Recalling that S :C ( , 3R n )  C (, IRn) is the orerator..

translates T by 7T, (SU)(T) - U(T + 7), set R = -S. Then G = "I,z,S,-!

Abelian group of linear operators that commutes with equation (2.2) in the sense tat

GF(p, Xw,u) - F (o,X,j,Gu) (4.-

For all G G and (p,A,u,u) e C1 
(R,]n) near (1,0,0,9). "oreovEr,

RSPO = -€P0' R,;k =  ;k', k = 1,2(. --

and

RPO . - 0 Rlkk = tk' k = 1,2 (4.-

The relations (4.5)-(4.7) imply that the bifurcation equations (4.1) are odd wit-

respect to (a,B). As in case I, we expand (f,,f as a Taylor series:

f 0 (a o + b 0U)a + pa 3 
+ rcz

2 
+ aR ( '0,L, ,)

f 1 (a A + b I )0 + q
a 2 8 

+ se
3 
+ SR 1(A't'z',)

where (aR0%R, ) represents the remaining terms, each k = 0,I, is cv,.:7

in (a,). The coefficients ak,bk, k - 0,1, are defined as for case I, :it-.

u replacing 6, and p,q,r,s depend upon C - F as follows
6uuU

p - 2 (CC 0,€ 0,*01e ; q - 3(C (, 0 ,€',€1

r - 3 (C( 0 #1 01 )00); a - (C(';, I, 1 ), 1 )

The corresponding non-degeneracy condition for this case is

a 0 b1 9 a 1 b0 , a0q 0 alp, a 0 s ' a1 r, ps # rq

Assuming (4.9), bifurcation for equations (4.1 .s qualitatively described by the

truncated form

-20-
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(

The correspondence between solutions of (4.1:) and thosc of (4.? -

In discussing bifurcation for (4.1)) in relation to

it should be recalled that the analysis is valid onl., locall-- -jta

are to be considered with this restriction.

Letting a~ = 0, F = 0 in turn in (4.10) gives primnary hrnrc:'<

respectively non-constant periodic, and equilibrium solutions of (2.1?o

each wi (near zero). These primary branches bifurcate from at a~-

given respectively by A = -b I p/a, + o L;!) and =-b, ',a,,

the first equation in (4.10) by a~, and the second by

a bw+ a2 + s2=a)" + b1w q+ p s =0

Solutions of (4.11) lie on secondary branches of solutions of equations (4.1),

ponding to secondary branches of solutions of (2.1) or (3.1). The broad : r -

the secondary bifurcation may be described in terms of the coefficients in (4.1,

distinguishing between the following two cases.

a W: If Car - a s(a p - a q) 0, then there are exactlc d two secondar-

bifurcation points (A*(u,+u*()) 4E Dd for each satisf (ring

1aIr 0 1aIb0 -a0 b1 )l,

When the inequality (4.12) is reversed, there is exactly one secondary bifurcation

point (a ) C T There are no other secondary bifurcation points for (2.1),

in the local sense of the analysis. The secondary branches consist of non-constant

periodic solutions of (2.1), and have values of satisfying

(A-A*Cti))(a r -a s) > 0.
1 0

-21-
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(B): If (alr - a0 S) (ap - a , then there are exactly, three secc.nar-

bifurcation points (c 2 - c D for each satisf,'ing

(4.2). ([( ),u*( )) is connected to each of (.*(2),+u2*(,-)) b,' secondar:. branches
2 -2

of non-constant pt.riodic solutions, with values of . lying between A*(h.) and "(')
- 1 2

There are no secondary bifurcation points for other values of

-22-
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